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Chapter 12
Stability and Error Analysis
of Applied-Force Co-simulation
Methods Using Mixed One-Step
Integration Schemes

Bryan Olivier, Olivier Verlinden and Georges Kouroussis

Abstract Co-simulation schemes are designed to couple subsystems during the inte-
gration process. Therefore, any complex or multi-physics system can be split into
subsystems in its mathematical representation, and re-coupled using a co-simulation
scheme. Dealing separately with each subsystem, its own characteristics and specifi-
cally its own solver is the purpose of this decoupling/re-coupling mechanism. Before
making a choice between all the existing solver-coupling schemes for a complex
mechanical system, it is interesting to know which one is the most efficient. There-
fore, this paper studies the performance of the Jacobi and Gauß–Seidel methods
using one-step integration schemes applied on a double harmonic oscillator. How-
ever, since most of the mechanical joints generate elastic forces, the study concerns
applied-force schemes only.

12.1 Introduction

To couple two (or more) dynamic models, it is often better to consider each model
in the appropriate approach, to avoid a single and rigorous analysis and to prefer
a decoupled approach. For example, in order to predict ground vibrations induced
by railway vehicles, it is common to develop decoupled vehicle/track/soil models
[1–3]. The model proposed by Kouroussis et al. [4] is a sequential two-step model
that uses a multibody modeling approach for the vehicle/track subsystem (including
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Fig. 12.1 Double Harmonic
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coefficient dc
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also a reduced model of the soil) for the first step and, for the second step, a finite
element model for the soil to simulate ground vibration propagation. This two-step
simulation process using different solvers could be transformed into a co-simulation
process. Therefore, it is important to determine where the global model (vehicle-
rails-sleepers-ballast-soil) must be split and which co-simulation scheme provides
the best results. Since each section where the system could be split generates elastic
constraints, only applied-forces co-simulation schemes will be considered.

This study presents an error analysis and also investigates the numerical stability
of two co-simulation schemes: the Jacobi and Gauß–Seidel schemes [5] applied
to a double harmonic oscillator with different stiffness ratios (Fig. 12.1). Research
in this field was already performed by Busch [5], however, this paper proposes an
alternative way to build the amplification matrices [6] of co-simulated mechanical
subsystems with their respective integration scheme. Furthermore, the impact of the
solver used for each subsystem and the coupling effect of two different solvers are
also investigated.

Figure 12.1 represents the system studied in this paper. Separated, the subsystems
i (composed of a mass mi and connected to the reference body with a spring of
stiffness ki where i = 1, 2) are supposed to be undamped in order to distinguish
the numerical damping caused by both numerical integration and coupling schemes.
The coupling joint (represented by kc and dc), however, presents damping to limit
instabilities. Since the link between subsystem 1 and subsystem 2 is flexible, both
systems are re-coupled by forces. The choice of applied-force coupling schemes has
two main interests:

– Any native elastic joint (even with damping) can be used to split an entire system.
– Rigid joints can be approximated by increasing the stiffness of the link (kc) in
the model (when kc → ∞, a situation close to the gluing is created but since the
value of the stiffness has to be defined, the method does not include algebraic
constraints).

Furthermore, different stiffness ratios are studied to illustrate the performance of
Jacobi and Gauß–Seidel co-simulation schemes in different situations representing
different physical phenomena.
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12.2 Amplification Matrix Construction

The amplification matrix that defines the modification of the state variables over
a time step has interesting properties that qualify the numerical schemes used to
integrate a given system. Before analyzing its properties, the following lines describe
how to construct that matrix. The method described here is comparable with the
method proposed by Busch [5].

Considered separately, each subsystem i consists of a harmonic oscillator with its

own eigenfrequency ω0i =
√

ki
mi
. Therefore, the equation of motion of this system is

ÿi + ω2
0i yi = 0 (12.1)

which is equivalent, for first integration schemes, to

[
1 0
0 1

]
ẋi +

[
0 −1

ω2
0i 0

]
xi = 0 if xi =

{
yi
ẏi

}
. (12.2)

Considering a one-step and first-order numerical integration formula Λ, the dis-
cretized system becomes

[
1 0
0 1

]
ẋt+h
i +

[
0 −1

ω2
0i 0

]
xt+h
i = 0 (12.3a)

Λ(xti , ẋ
t
i , x

t+h
i , ẋt+h

i ) = 0 (12.3b)

and can be re-written in the form

Pizt+h
i + Qizti = 0 (12.4)

where zt+h
i = {

xt+h
i ẋt+h

i

}T
and zti = {

xti ẋ
t
i

}T
.

It can be noticed that Eq.12.4 can be written for any mechanical system with
ncp configuration parameters and leads to 4ncp equations (for mechanical systems
described by a first order formulation). Furthermore, it yields the discretized state
space representation

zt+h
i = −P−1

i Qizti = A0
i z

t
i (12.5)

where A0
i is the amplification matrix of the uncoupled subsystem i .

12.2.1 Amplification Matrix of Co-simulation Schemes

As for classical integration schemes, the evolutionof the state variables (configuration
parameters and their first time derivative for mechanical systems) over a time step
can be expressed, for a given co-simulation scheme, as:
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zt+h = ACSzt (12.6)

representing the relationship between the state variables at time t and t + h due
to the integration scheme. The coupling amplification matrix ACS is a function of
the time step, both subsystems, the integration schemes used and, furthermore, the
coupling schemeused. For both subsystems, the discretized state space representation
becomes, to take the coupling into account,

Pizt+h
i + Qizti + Riui = 0 (12.7)

in which:

– Ri matrix has a size of 4ncp × ncv and defines how the subsystems are interacting
(with ncv , the number of coupling variables). This matrix could also be used in the
monolithic system (in opposition to the co-simulated system) in order to define
the interaction between both equations of the entire system.

– ui vector has a length of ncv × 1 and defines the coupling variables chosen, for
each subsystem, with respect to the state variables of the others. This vector defines
the coupling scheme used to perform the integration.

In general, for both subsystems, the inputs are developed in,

ui = Ut
iz

t
j �=i + Ut+h

i zt+h
j �=i (12.8)

where Ut
i and Ut+h

i defines the connexion scheme between both subsystems and,
among other things, the order in which both subsystems are integrated and how
the coupling variables are predicted for the second integration when the scheme is
sequential. In particular, in our system without any link damping (dc = 0 → ncv =
1), taking into account that zt1 = {

yt1 ẏ
t
1 ẏ

t
1 ÿ

t
1

}T
and zt2 = {

yt2 ẏ
t
2 ẏ

t
2 ÿ

t
2

}T
(ẏt1 and ẏt2

are taken twice into account due to the first order transformation of the second order
equations of motion), the following cases can happen:

– Ut
1 = [ 1 0 0 0 ], Ut+h

1 = [ 0 0 0 0 ], Ut
2 = [ 1 0 0 0 ] and Ut+h

2 = [ 0 0 0 0 ] corre-
spond to the Jacobi scheme (illustrated in Fig. 12.2b) in which each integration
does not influence each other over the same macro-time step.

– Ut
1 = [ 1 0 0 0 ], Ut+h

1 = [ 0 0 0 0 ], Ut
2 = [ 0 0 0 0 ] and Ut+h

2 = [ 1 0 0 0 ] corre-
spond to the Gauß–Seidel scheme (illustrated in Fig. 12.2a) where the first sub-
system is integrated without any interaction with subsystem 2 (such as in Jacobi
scheme) but the second subsystem is integrated using the output of the first inte-
gration. This scheme is completely sequential.

– Ut
1 = [ 0 0 0 0 ], Ut+h

1 = [ 1 0 0 0 ], Ut
2 = [ 1 0 0 0 ] and Ut+h

2 = [ 0 0 0 0 ] lead to
the same as the previous scheme but in which subsystem 2 is integrated before
subsystem 1.

– Ut
1 = [ 0 0 0 0 ], Ut+h

1 = [ 1 0 0 0 ], Ut
2 = [ 0 0 0 0 ] and Ut+h

2 = [ 1 0 0 0 ] corre-
spond to a scheme where each subsystem is integrated before the other one which
is practically impossible. Using Eqs. 12.7 and 12.8 with that schemes yields the
amplification matrix of the monolithic system. However, even if it is possible with
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(a) (b)

Fig. 12.2 Gauß–Seidel (2a) and Jacobi (2b) co-simulation schemes: step procedure with initial
conditions z0, subsystem i state variables zi and subsystem i inputs ui

that simple example, iteration becomes necessary when working with dedicated
software packages for each subsystem.

To obtain those matrices for the system with a link damping (dc �= 0 → ncv = 2),
a second line must be added with a 1 in the third column (or second due to the
transformation of second order mechanical equations in first order equations) to
select the speed as a second coupling variable.

For two subsystems, Eqs. 12.7 and 12.8 become

zt+h
1 + P−1

1 Q1zt1 + P−1
1 R1

(
Ut

1z
t
2 + Ut+h

1 zt+h
2

) = 0 (12.9a)

zt+h
2 + P−1

2 Q2zt2 + P−1
2 R2

(
Ut

2z
t
1 + Ut+h

2 zt+h
1

) = 0 (12.9b)

in which P−1
2 Q2 and P−1

2 Q2 are, using Eq.12.5, the opposite of the amplification
matrices −A0

1 and −A0
2 of each uncoupled subsystem. This system yields the matrix

form

[
I P−1

1 R1Ut+h
1

P−1
2 R2Ut+h

2 I

] {
zt+h
1
zt+h
2

}
+

[ −A0
1 P−1

1 R1Ut
1

P−1
2 R2Ut

2 −A0
2

]{
zt1
zt2

}
= 0 (12.10)

that could be shortened in the generic form

PCSzt+h + QCSzt = 0 (12.11)

if zt,t+h =
{
zt,t+h
1 zt,t+h

2

}T
. Finally, such as for classical monolithic systems, the

amplification matrix of co-simulation methods is expressed by

ACS = − (
PCS

)−1
QCS (12.12)
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wherePCS andQCS are defined by Eqs. 12.10 and 12.11where I is the identitymatrix
with a size tuned to the number of variables zi of subsystem i scheme.

A few remarks can be made on Eq.12.10:

– The coupling between both subsystems clearly appears through the non-diagonal
terms. Indeed, if both Ri are matrices filled with zeros, both systems appear to
be fully decoupled and the amplification matrix contains only both uncoupled
amplification matrices A0

1 and A0
2.

– When Ut+h
i is filled with zeros, the corresponding subsystem is not explicitly

dependent upon the second subsystem integrated states variables.
– When bothUt

i are filled with zeros, the amplification matrix obtained corresponds
to the monolithic system matrix. As specified earlier, this scheme is practically
unreachable with a co-simulation scheme without infinite iterations.

12.2.2 Amplification Matrix of Iterated Schemes

When the accuracy of the solution is more important than the computation time, the
co-simulation scheme can be iterated in order to improve accuracy and numerical
stability. Indeed, in Eq.12.7, the closer ui and zt+h

j �= j , the closer the co-simulation
and the monolithic schemes should be. Hence, for a given coupling scheme, a first
integration of both subsystems could be performed to have a better estimation of ui
values in a second full integration.

Taking into account iterations in the co-simulation scheme, the state space repre-
sentation of a subsystem scheme, Eq.12.7 becomes, for the kth iteration of a given
scheme:

Piz
t+h,k
i + Qizti + Riuk

i = 0 (12.13)

where zt+h,k
i is the kth iteration of the state variables and uk

i is the kth iteration of the
inputs of subsystem i . These inputs are obtained by modifying adequately Eq.12.8:

uk
i = Us,k

i zt+h,k
j �=i + Us−1,k

i zt+h,k−1
j �=i (12.14)

where, such as for non-iterated systems, the matrices Us,k
i and Us−1,k

i define the pro-
cedure followed to integrate both subsystems during the iteration process. Indeed, if
k represents the number of iterations,Us,k

i defines whether the integration of subsys-
tem i is takes into account an estimation of the state variables zt+h,k

j �=i resulting from

an integration of the other subsystem during the same kth iteration. However, Us,k
i

defines whether the integration of subsystem i takes into account the estimation of
the state variables zt+h,k−1

j �=i resulting from the previous iteration k − 1th. It must be
remarked that an extrapolation of the state variables obtained in N previous itera-
tions could lead to a faster convergence to the monolithic scheme. In this study, the
iteration matrices are defined as follows (for the undamped coupling scheme):

– Us,k
1 = [ 0 0 0 0 ], Us,k−1

1 = [ 1 0 0 0 ], Us,k
2 = [ 0 0 0 0 ] and Us,k−1

2 = [ 1 0 0 0 ]
which leads to a iterated-Jacobi scheme or
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– Us,k
1 = [ 0 0 0 0 ], Us,k−1

1 = [ 1 0 0 0 ], Us,k
2 = [ 1 0 0 0 ] and Us,k−1

2 = [ 0 0 0 0 ]
which leads to a iterated-Gauß-Seidel scheme;

– these matrices could vary between two successive iterations.

Considering Eqs. 12.13 and 12.14, for two subsystems solved by an iterated co-
simulation scheme, it can be written

P1z
t+h,k
1 + Q1zt1 + R1

(
Us,k

1 zt+h,k
2 + Us−1,k

1 zt+h,k−1
2

)
= 0 (12.15a)

P2z
t+h,k
2 + Q2zt2 + R2

(
Us,k

2 zt+h,k
1 + Us−1,k

2 zt+h,k−1
1

)
= 0 (12.15b)

which can be expressed in the following matrix form

[
P1 R1U

s,k
1

R2U
s,k
2 P2

] {
zt+h,k
1

zt+h,k
2

}
+

[
Q1 0
0 Q2

]{
zt1
zt2

}
+

[
0 R1U

s,k−1
1

R2U
s,k−1
2 0

] {
zt+h,k−1
1

zt+h,k−1
2

}
= 0

(12.16)
or in a shorter form

Pi tzt+h,k + Qi tzt + RUi tzt+h,k−1 = 0 (12.17)

Since every estimation is based only on the initial conditions of the step zt , the
state variables estimation for the kth iteration are be expressed as:

zt+h,k = ACS,kzt (12.18)

which yields, with Eq.12.17,

ACS,k = − (
Pi t

)−1 (
Qi t + RUi tACS,k−1

)
(12.19)

with ACS,0 computed using Eq.12.12.

12.3 Results

The definition of the amplification matrix of co-simulation schemes provides crucial
information about the efficiency of the scheme. Indeed, the spectral radius ρ(A) [7],
an indicator of the stability of the scheme, can be deduced from the amplification
matrix A. The stability criterion of a numerical scheme is

ρ(A) = max (|λ(A)|) < 1 (12.20)

with λ the function computing the eigenvalues of a matrix. However, a stable scheme
does notmean that the scheme is accurate. Indeed,more than the stability, the spectral
radius ρ provides a global idea on the transformation that the scheme applied on the
real results:
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– if ρ = 1, the numerical scheme is strictly stable which means that there is at least
one mode that conserves its energy;

– if ρ < 1, the numerical scheme dissipates energy. That characteristic is a synonym
of stability;

– if ρ > 1 the numerical scheme introduces energy into the integrated system. This
causes instability and the higher the spectral radius, the faster the integrated system
will diverge from the analytical solution.

In Fig. 12.3, the spectral radii of 5 different schemes are studied, for Gauß-Seidel
and Jacobi coupling schemes applied with forward and backward Euler methods.
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Fig. 12.3 Spectral radii of Gauß-Seidel with the order subsystem 1 before subsystem 2 (GS12)
and Jacobi (J) schemes with forward Euler (ee) and backward Euler (ei) integration schemes. (3a)
and (3b) are computed for kc

k1
= 1, (3c) and (3d) are computed for kc

k1
= 10 while k2

k1
= 1, m2

m1
= 1

and dc = 0
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The latter were chosen for their lack of efficiency in order to illustrate clearly the
characteristics of the schemes. In each graph, the reference is assumed to be the
monolithic corresponding scheme. A few remarks can be deduced:

– For forward Euler, Figs. 12.3a, c show that the Jacobi scheme is slightly more
unstable than the Gauß-Seidel one. Indeed, since Gauß-Seidel is sequential, the
second integration input parameters are already a better estimation than in the
Jacobi scheme. However, the monolithic scheme provides better results than both
coupling schemes.

– For backward Euler, Figs. 12.3b, d show that the Jacobi scheme is slightly more
damped than the Gauß-Seidel one which is also more damped than the monolithic
scheme. The reason is identical as above.

– Between Figs12.3a–d, the coupling stiffness ratio kc
k1
was multiplied by 10. It can

be noticed that the stiffer the coupling, the less accurate the results are.
– In each graph, a 1-iteration version of both schemes is studied using Eq.12.19.
Generally, the results are better than each non-iterated corresponding scheme. It
can also be proven that, for explicit Euler schemes, it converges to the corre-
sponding monolithic scheme in a single iteration for both Jacobi and Gauß-Seidel
coupling methods.

More than the spectral radius, the frequency error and the damping ratios can be
computed using the amplification matrix of a scheme. Those parameters are defined
using the continuous equivalent λc

i of the discretized form of the eigenvalues λi of
the amplification matrix A given in Eq.12.21:

λc
i = ln λi

h
= σi ± jωi (12.21)

with h the timestep. From this definition, the damping ratio ξωi and the frequency
error εωi of mode i can be computed using Eqs. 12.22a and 12.22b:

ξωi = −σi√
σ2
i + ω2

i

(12.22a)

εωi =
√

σ2
i + ω2

i − ω0i

ω0i
(12.22b)

withω0i the analytical eigenfrequency of mode i . Figure 12.4 illustrates these param-
eters for mixed forward/backward Euler schemes taking into account that backward
Euler is always applied on the second subsystem. Since Gauß-Seidel seemed to pro-
vide the best performance, the situations in which both subsystems are integrated
using forward and backward Euler methods, with Gauß-Seidel coupling, are taken
as references to compare the mixed schemes with. It can be observed that:
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Fig. 12.4 Relative frequency error (εωi ) and damping ratio (ξωi ) of Gauß-Seidel with the order
subsystem 1 before subsystem 2 (GS12) and Jacobi (J) schemes with mixed forward Euler (ee) and
backward Euler (ei) integration schemes. (4a) and (4c) concern the first eigenfrequency ω1 and (4b)
and (4d) concern the second eigenfrequency ω2 with ω1 < ω2 while

kc
k1

= 10, k2
k1

= 1, m2
m1

= 1 and
dc = 0.2

– for small time steps, the frequency error of the second eigenfrequency is smaller in
mixed schemes than in fully explicit/implicit schemes. However, the fully explicit
scheme seems to provide a smaller frequency error for the first eigenfrequency;

– both mixed schemes provide a damping closer to 0 for the second eigenfrequency.
However, for the first eigenfrequency, the fully explicit scheme provides, once
again, a smaller damping;

– both frequency errors converge to 0 with the time step;
– both damping coefficients converge to the physical damping coefficient which
means that the numerical damping converges to 0.
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Fig. 12.5 Gauß-Seidel (a, b) and Jacobi (c, d) schemes applied with different integration schemes
with m2

m1
= 1, k2

k1
= 1 and kc

k1
= 10. a and c represents forward Euler (ee) for both subsystems and

b and d represents forward Euler (ee) for subsystem 1 and backward Euler (ei) for subsystem 2.
The stability and instability regions are separated by a line at which the spectral radius is 1

Figure 12.5 shows the impact of the link damping dc on the stability of mixed
Jacobi and Gauß-Seidel schemes through their spectral radii. It turns out that:

– both mixed schemes provide spectral radii closer to 1 than the corresponding fully
explicit scheme;

– once again, the Gauß-Seidel scheme appears to be better than the Jacobi scheme;
– both mixed scheme offer a larger stability region that grows with the link damping
dc. However, the price for this larger stability region is a larger damping of the
solution for a same time step.
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12.4 Conclusions

Such as for classic monolithic mathematical representation of mechanical system,
the amplification matrix of co-simulated schemes can be written and interesting
properties (such as the spectral radius, the frequency error and the damping ratio)
can be deduced:

– each coupling scheme used exhibits a zero-stable behavior;
– co-simulation schemes are less accurate than the correspondingmonolithicmethod;
– the Jacobi scheme usually provides a reduced accuracy in comparison with the
Gauß-Seidel scheme. This phenomenon is explained by their respective parallel
and sequential behavior [5];

– the results provided by iterated schemes are usually better than the corresponding
non-iterated schemes. Once again, the sequential Gauß-Seidel scheme appears to
give the best results;

– mixed integration schemes produce larger stability regions for the time step choice.
However, in return, the damping induced by those methods is larger for a same
time step.
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